LIKELIHOOD OF THE POWER SPECTRUM IN COSMOLOGICAL PARAMETER ESTIMATION
نویسندگان
چکیده
منابع مشابه
Power spectrum parameter estimation
The power spectrum of a zero-mean stationary Gaussian random process is assumed to be known except for one or more parameters which are to be estimated from an observation of the process during a finite time interval. The approximation is introduced that the coefficients of the Fourier series expansion of a realization of long-time duration are uncorrelated. Based on this approximation maximum ...
متن کاملanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولPower Spectrum Estimation II. Linear Maximum Likelihood
This second paper of two companion papers on the estimation of power spectra specializes to the topic of estimating galaxy power spectra at large, linear scales using maximum likelihood methods. As in the first paper, the aims are pedagogical, and the emphasis is on concepts rather than technical detail. The paper covers most of the salient issues, including selection functions, likelihood func...
متن کاملA Method for Power Spectrum Parameter Estimation
An asymptotic analysis is carried out for an approximate method of estimating the parameters of the power spectrum of a zero-mean stationary Gaussian random process from an observed realization of limited duration. Maximum likelihood estimates are obtained with the approximation that the coefficients of the Fourier series expansion of the realization are uncorrelated. This is equivalent to othe...
متن کاملMaximum Likelihood Parameter Estimation
The problem of estimating the parameters for continuous-time partially observed systems is discussed. New exact lters for obtaining Maximum Likelihood (ML) parameter estimates via the Expectation Maximization algorithm are derived. The methodology exploits relations between incomplete and complete data likelihood and gradient of likelihood functions, which are derived using Girsanov's measure t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2013
ISSN: 0004-637X,1538-4357
DOI: 10.1088/0004-637x/777/1/75